Compass and Straightedge Constructions

MTH 202

September 23, 2015

Construction 1 - Equilateral triangle given a side

Given a segment \overline{AB} , an equilateral triangle with sidelengths AB can be constructed by:

- (1) Draw a circle with center A and radius AB.
- (2) Draw a circle with center B and radius AB.
- (3) Mark an intersection point between the two circles, denoted C.

Then $\triangle ABC$ is an equilateral triangle, because all the sides have length AB.

Construction 2 - Bisect a segment \overline{AB}

Given a segment \overline{AB} , we can find the midpoint (or line passing through the midpoint perpendicular to \overline{AB}) by:

- (1) Draw a circle with center A and radius AB.
- (2) Draw a circle with center B and radius AB.
- (3) Mark both intersection points between the two circles, denoted C and D.
- (4) Draw the segment \overline{CD} .

The intersection of \overline{CD} and \overline{AB} is the midpoint of \overline{AB} , and the line \overleftrightarrow{CD} is the perpendicular bisector of \overline{AB} .

Construction 3 - Bisect an angle $\angle UVW$

Given a vertex V and rays \overrightarrow{VU} and \overrightarrow{VW} , we can bisect angle $\angle UVW$ by:

- (1) Draw a circle with center V.
- (2) Mark the intersection points with rays \overrightarrow{VU} and \overrightarrow{VW} as A and B.
- (3) Find the midpoint of \overline{AB} using **Construction 2**. Denote it as C.
- (4) Draw ray \overrightarrow{VC} .

The ray \overrightarrow{VC} bisects the angle $\angle UVW$.

Construction 4 - Draw a line perpendicular to line L through point P on L

- (1) The line forms a straight angle at P. Bisect this angle using **Construction** 3.
- (2) Extend the ray constructed in Step 1 to a line.

This line is perpendicular to L and passes through P.

Construction 5 - Draw a line perpendicular to line L through point P not on L These two constructions overlap heavily:

- (1) Draw a circle with center P intersecting line L.
- (2) Mark the intersection points as A and B.
- (3) Find the midpoint of segment \overline{AB} using Construction 2, denoted as C.
- (4) Construct line \overrightarrow{PC} .

The line \overrightarrow{PC} is perpendicular to L.

Construction 6 - Copy triangle $\triangle ABC$ onto a ray \overrightarrow{DE}

Denote the start of the ray as A' (as well as D). Then:

- (1) Draw a circle with center A' and radius AB.
- (2) Mark the intersection point with \overrightarrow{DE} as B'.
- (3) Draw a circle with center A' and radius AC.
- (4) Draw a circle with center B' and radius BC.
- (5) Mark the intersection point between these points as C'.

Then $\Delta A'B'C'$ is a copy of ΔABC since all the sidelengths are the same in both triangles.

The following constructions are also useful, but we won't cover them explicitly in class:

Construction 7 - Copy an angle onto a ray

This is a slight modification of the previous. Start with $\angle UVW$ and a ray \overrightarrow{RS} :

- (1) Mark a point B on \overrightarrow{VU} .
- (2) Mark a point C on \overrightarrow{VW} .
- (3) Copy $\triangle BUC$ onto ray \overrightarrow{RS} using Construction 6.

Angle $\angle R$ is congruent to $\angle UVW$.

Construction 8 - Line parallel to L through point P

This constructs two perpendicular lines:

- (1) Construct the line M through P perpendicular to L using **Construction** 5
- (2) Construction the line N through P perpendicular to M using Construction 4.

Line N is parallel to L.